A class of II1 factors without property P but with zero second cohomology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the property of for a second-order system with zero diagonal coefficient

Abstract: This paper investigates the problem of whether all trajectories of the system and cross the vertical isocline, which is very important for the existence of periodic solutions and oscillation theory. Sufficient conditions are given for all trajectories to cross the vertical isocline.  

متن کامل

Hochschild Cohomology of Ii1 Factors with Cartan Masas

In this paper we prove that for a type II1 factor N with a Cartan maximal abelian subalgebra (masa), the Hochschild cohomology groups Hn(N, N)=0, for all n ≥ 1. This generalizes the result of Sinclair and Smith, who proved this for all N having separable predual.

متن کامل

Hochschild Cohomology of Factors with Property Γ

The main result of this paper is that the kth continuous Hochschild cohomology groups Hk(M,M) and Hk(M, B(H)) of a von Neumann factor M ⊆ B(H) of type II1 with property Γ are zero for all positive integers k. The method of proof involves the construction of hyperfinite subfactors with special properties and a new inequality of Grothendieck type for multilinear maps. We prove joint continuity in...

متن کامل

A Cohomology Theory for Commutative Algebras. Ii1

1. Introduction. In the first paper of this series [l], henceforth referred to as I, we define a cohomology theory for a commutative algebra P with coefficients in an P-module M for which H2(R, M) is the group of singular extensions of P by M. In this paper we generalize to a cohomology 22(5, <b, M) where (S, <p) is a singular extension of P and M is an P-module. The second group is again a gro...

متن کامل

A Clan with Zero without the Fixed Point Property

References 1. C. E. Capel, Inverse limit spaces, Duke Math. J. vol. 21 (1954) pp. 233-246. 2. H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurve, Sitzungsber. Akad. Wiss., Wien, vol. 123 (1914) pp. 2433-2489. 3. J. L. Kelley, General topology, New York, van Nostrand Co., 1955. 4. S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. vol. 1 (1920) pp. 166209. 5. R. L. Wilder, Topo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 1974

ISSN: 0004-2080

DOI: 10.1007/bf02384751